Zpět na informační servis

Vnitřní prostředí staveb

31. května 2023
Text redakce

Teplotně vlhkostní podmínky činžovních domů druhé poloviny 19. a počátku 20. století

doc. Ing. Klára Kroftová, Ph.D.
Ing. Radek Zigler, Ph.D.
prof. Ing. Jiří Witzany, DrSc.

Zdroje:

[1] Kyoto Protocol to the United Nations Framework Convention on Climate Change; Kyoto: United Nations, 1997.

[1] TROI, A. Recommendations for Local Governments: Integrating Energy Efficient Retrofit of Historic Buildings into Urban Sustainability. Bolzano: European Commission, 2010.

[3] BENEŠOVSKÁ, K., P. Kratochvíl et al. Velké dějiny zemí Koruny české. Praha: Paseka, 2009.

[4] KROFTOVÁ, K.; M. HULEC; H. HEXNEROVÁ; L. HEJNÝ; M. EBEL; P. KODERA et al. Tradiční stavitelství za císaře Franze Josefa. Praha: ČVUT v Praze, 2022. 

[5] HORSKÁ, P.; E. MAUER; J. MUSIL. Zrod velkoměsta: Urbanizace českých zemí a Evropa. Praha, Litomyšl: Paseka, 2002. 

[6] EBEL, M. Dějiny českého stavebního práva. Praha: ABF – Arch, 2007.

[7] Kolektiv autorů. Přehled stavitelství, Praha: Nakl. Práce, 1950.

[8] ČSN 73 0540: 2011 ČSN 73 0540-2; Tepelná ochrana budov. Část 2: Funkční požadavky. Praha, 2011.

[9] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings.

[10] Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC.

[11] Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. A Renovation Wave for Europe—greening our buildings, creating jobs, improving lives.

[12] ČSN EN ISO 14040:2006 Environmentální management – Posuzování životního cyklu – Zásady a osnova.

[13] ČSN EN ISO 14044:2006 Environmentální management – Posuzování životního cyklu – Požadavky a směrnice.

[14] BELLIA, L.; F.R.D ALFANO; J. GIORDANO; E. IANNIELLO; G. RICCIO. Energy requalification of a historical building: A case study. Energy and Buildings 95 (2015) 184–9.

[15] BJARLØV, S.P.; G. R. FINKEN; T. ODGAARD. Retrofit with Interior Insulation on Solid Masonry Walls in Cool Temperate Climates – An Evaluation of the influence of Interior Insulation Materials on Moisture Condition in the Building Envelope. Energy Procedia, 2015, 78, 1461–1466, https://doi.org/10.1016/j.egypro.2015.11.171.

[16] ODGAARD, T.; S. P. BJARLØV; C. RODE; M. VESTERLØKKE. Building Renovation with Interior Insulation on Solid Masonry Walls in Denmark – A study of the Building Segment and Possible Solutions. Energy Procedia, 2015, 78, 830-835, https://doi.org/10.1016/j.egypro.2015.11.003.

[17] ODGAARD, T.; S. P. BJARLØV; C. RODE. Interior insulation—Characterisation of the historic, solid masonry building segment and analysis of the heat saving potential by 1d, 2d, and 3d simulation. Energy and Buildings, 2018, 162, 1-11, https://doi.org/10.1016/j.enbuild.2017.12.008.

[18] ANTOLINC, D.; K. ČERNE; Z. JAGLIČIĆ. Risk of Using Capillary Active Interior Insulation in a Cold Climate. Energies, 2021, 14, 21:6890, DOI:10.3390/en14216890.

[19] ZHOU, X.; D. DEROME; J. CARMELIET. Analysis of moisture risk in internally insulated masonry walls. Building and Environment, 2021, 212: 108734. DOI: 10.1016/j.buildenv.2021.108734, LicenseCC BY-NC-ND 4.0.

[20] STAHL, T.; K. G. WAKILI. Hydrophilic and hydrophobic materials as internal insulations for historic masonry walls. In book: Energy-Efficient Retrofit of Buildings by Interior Insulation, 2022. DOI: 10.1016/B978-0-12-816513-3.00018-6.

[21] VEREECKEN, E.; S. ROELS. Capillary active interior insulation: do the advantages really offset potential disadvantages? Project: Hygrothermal analysis of interior insulation, Materials and Structures, 2014, 48(9), DOI: 10.1617/s11527-014-0373-9.

[22] BISENIECE, E.; G. ŽOGLA; A. KAMENDERS; R. PURVINŠ; K. KAŠS; R. VANAGA; A. BLUMBERGA. Thermal performance of internally insulated historic brick building incold climate: A long term case study. Energy Build.; 2017; 152, 577-586. DOI: https://dx.doi.org/10.1016/j.enbuild.2017.07.082.

[23] KLÕŠEIKO, P.; E. ARUMÄGI; T. KALAMEES. Hygrothermal performance of internally insulated brick wall in cold climate: A case study in a historical school building. J. Build. Phys.; 2015; 38, 444–464. DOI: https://dx.doi.org/10.1177/1744259114532609.

[24] JENSEN, N. F.; C. RODE; B. ANDERSEN; E. B. MØLLER et al. Internal insulation of solid masonry walls – field experiment with Phenolic foam and lime-cork based insulating plaster. Web of Conferences, 2020, E3S 172(2):01003. DOI: 10.1051/e3sconf/202017201003.

[25] ODGAARD, T. Challenges when retrofitting multi-storey buildings consisting of solid masonry facades and embedded wood with interior thermal insulation. Project: Interior insulation of buildings from 1850 to 1930 with massive external masonry walls and embedded wooden beam floor structure, 2019. DOI: 10.13140/RG.2.2.24563.48167.

[26] LEITEN, K.; T. ARU; M. KIVISTE; M.-J. MILJAN. Hygrothermal Analysis of Masonry Wall with Reed Boards as Interior Insulation System. Project: Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts, ZEBE, grant 2014-2020.4.01.15-0016 funded by the European Regional Development Fund.a rahastab Euroopa Regionaalarengu Fond. Energies, 2020, 13(20):5252. DOI: 10.3390/en13205252.

[27] UENO, K.; J. W. LSTIBUREK. Field Monitoring of Embedded Wood Members in Insulated Masonry Walls in a Cold Climate. Conference: BEST Conference Building Enclosure Science & Technology™ (BEST4), 2015. 

[28] VEREECKEN, E.; D. DECKERS; H. JANSSEN, S. ROELS. Field Study on Hydrophobised Internally Insulated Masonry Walls. Conference: XV International Conference on Durability of Building Materials and Components, 2020. DOI: 10.23967/dbmc.2020.067.

[29] VEREECKEN, E.; S. ROELS. Hygrothermal performance of internally insulated masonry walls with embedded wooden beam heads: a field study on the impact of hydrophobisation. Journal of Physics Conference Series, 2021, 2069(1):012019. DOI: 10.1088/1742-6596/2069/1/012019.

[30] ANDREOTTI, M.; M. CALZOLARI; P. D. LUISA; D. PEREIRA. Hygrothermal performance of an internally insulated masonry wall: Experimentations without a vapour barrier in a historic Italian Palazzo. Energy and Buildings, 2022, 260(1):111896. DOI: 10.1016/j.enbuild.2022.111896.

[31] STESKENS, P.; X. LONCOUR; S. ROELS; E. VEREECKEN. Interior insulation of masonry walls – An assessment method. Conference: 2nd Int. Congress on Interior InsulationAt: Dresden, Germany, 2013.

[32] KOČÍ, J.; J. FOŘT; R. ČERNÝ. Energy efficiency of latent heat storage systems in residential buildings: Coupled effects of wall assembly and climatic conditions. Renewable and Sustainable Energy Reviews 132 (2020) 110097.

[33] de MASI, R. F.; A. GIGANTE; S. RUGGIERO; G. P. VANOLI. The impact of weather data sources on building energy retrofit design: case study in heating-dominated climate of Italian backcountry. Journal of Building Performance Simulation 13 (2020) 264–84.

[34] POKHAREL, T. R.; H. B. RIJAL; M. SHUKUYA. A field investigation on indoor thermal environment and its associated energy use in three climatic regions in Nepal. Energy and Buildings 222 (2020) 110073. 

[35] OTHMEN, I.; P. POULLAIN; N. LEKLOU. Sensitivity analysis of the transient heat and moisture transfer in a single layer wall. European Journal of Environmental and Civil Engineering 24 (2020) 2211–29. 

[36] FANG, A.; Y. CHEN; L. WU. Modeling and numerical investigation for hygrothermal behavior of porous building envelope subjected to the wind driven rain. Energy and Buildings 231 (2021) 110572. 

[37] ZHANG, Y.; X. SUN; M. A. MEDINA. Calculation of transient phase change heat transfer through building envelopes: An improved enthalpy model and error analysis. Energy and Buildings 209 (2020) 109673.

[38] SHIN, M.-S.; K.-N. RHEE; G.-J. JUNG. Optimal heating start and stop control based on the inferred occupancy schedule in a household with radiant floor heating system. Energy and Buildings 209 (2020) 109737.

[39] FIGUEIREDO, A.; R. VICENTE; J. LAPA; C. CARDOSO; F. RODRIGUES; J. KÄMPF. Indoor thermal comfort assessment using different constructive solutions incorporating PCM. Applied Energy 208 (2017) 1208–21.

[40] KOČÍ, J.; V. KOČÍ; R. ČERNÝ. A Method for Rapid Evaluation of Thermal Performance of Wall Assemblies Based on Geographical Location. Energies 12 (2019) 1353.